Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

What is the shape of wrapping paper that you would need to completely wrap this model?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Can you find a rule which relates triangular numbers to square numbers?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

To avoid losing think of another very well known game where the patterns of play are similar.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A spider is sitting in the middle of one of the smallest walls in a room and a fly is resting beside the window. What is the shortest distance the spider would have to crawl to catch the fly?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

If you move the tiles around, can you make squares with different coloured edges?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.