Search by Topic

Resources tagged with Visualising similar to Flying Down Under:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 188 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Circuit Training

Stage: 4 Challenge Level: Challenge Level:1

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

problem icon

Shaping the Universe I - Planet Earth

Stage: 3 and 4

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

problem icon

Buses

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

problem icon

Crossing the Atlantic

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Every day at noon a boat leaves Le Havre for New York while another boat leaves New York for Le Havre. The ocean crossing takes seven days. How many boats will each boat cross during their journey?

problem icon

Shaping the Universe II - the Solar System

Stage: 3 and 4

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

problem icon

Efficient Packing

Stage: 4 Challenge Level: Challenge Level:1

How efficiently can you pack together disks?

problem icon

Packing 3D Shapes

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What 3D shapes occur in nature. How efficiently can you pack these shapes together?

problem icon

Fermat's Poser

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the point whose sum of distances from the vertices (corners) of a given triangle is a minimum.

problem icon

One and Three

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

problem icon

Playground Snapshot

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

problem icon

Around and Back

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

problem icon

LOGO Challenge - Circles as Animals

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

See if you can anticipate successive 'generations' of the two animals shown here.

problem icon

Speeding Boats

Stage: 4 Challenge Level: Challenge Level:1

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

problem icon

Air Nets

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

problem icon

Clocking Off

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

problem icon

There and Back Again

Stage: 3 Challenge Level: Challenge Level:1

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

problem icon

LOGO Challenge - Triangles-squares-stars

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

problem icon

John's Train Is on Time

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A train leaves on time. After it has gone 8 miles (at 33mph) the driver looks at his watch and sees that the hour hand is exactly over the minute hand. When did the train leave the station?

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

A Problem of Time

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Consider a watch face which has identical hands and identical marks for the hours. It is opposite to a mirror. When is the time as read direct and in the mirror exactly the same between 6 and 7?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Rolling Around

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

problem icon

Inside Out

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

problem icon

Rolling Triangle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

problem icon

Ding Dong Bell

Stage: 3, 4 and 5

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

problem icon

Just Opposite

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A and C are the opposite vertices of a square ABCD, and have coordinates (a,b) and (c,d), respectively. What are the coordinates of the vertices B and D? What is the area of the square?

problem icon

Sea Defences

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

problem icon

Jam

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

To avoid losing think of another very well known game where the patterns of play are similar.

problem icon

Coke Machine

Stage: 4 Challenge Level: Challenge Level:1

The coke machine in college takes 50 pence pieces. It also takes a certain foreign coin of traditional design. Coins inserted into the machine slide down a chute into the machine and a drink is duly. . . .

problem icon

Doesn't Add Up

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

In this problem we are faced with an apparently easy area problem, but it has gone horribly wrong! What happened?

problem icon

Bendy Quad

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

problem icon

Nine Colours

Stage: 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

problem icon

When Will You Pay Me? Say the Bells of Old Bailey

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

problem icon

Summing Squares

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

problem icon

Sliced

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

An irregular tetrahedron has two opposite sides the same length a and the line joining their midpoints is perpendicular to these two edges and is of length b. What is the volume of the tetrahedron?

problem icon

Right Time

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

problem icon

Baravelle

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

What can you see? What do you notice? What questions can you ask?

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

Triangles Within Pentagons

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that all pentagonal numbers are one third of a triangular number.

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

Triangles Within Squares

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you find a rule which relates triangular numbers to square numbers?

problem icon

Triangles Within Triangles

Stage: 4 Challenge Level: Challenge Level:1

Can you find a rule which connects consecutive triangular numbers?

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

Conway's Chequerboard Army

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

problem icon

Efficient Cutting

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Use a single sheet of A4 paper and make a cylinder having the greatest possible volume. The cylinder must be closed off by a circle at each end.

problem icon

Lost on Alpha Prime

Stage: 4 Challenge Level: Challenge Level:1

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

problem icon

Contact

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

problem icon

Changing Places

Stage: 4 Challenge Level: Challenge Level:1

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

problem icon

When the Angles of a Triangle Don't Add up to 180 Degrees

Stage: 4 and 5

This article outlines the underlying axioms of spherical geometry giving a simple proof that the sum of the angles of a triangle on the surface of a unit sphere is equal to pi plus the area of the. . . .