Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Imagine you have an unlimited number of four types of triangle. How many different tetrahedra can you make?

How many winning lines can you make in a three-dimensional version of noughts and crosses?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

How many different symmetrical shapes can you make by shading triangles or squares?

How many moves does it take to swap over some red and blue frogs? Do you have a method?

If you move the tiles around, can you make squares with different coloured edges?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Can you find a way of representing these arrangements of balls?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

In how many ways can you fit all three pieces together to make shapes with line symmetry?

Can you find a rule which connects consecutive triangular numbers?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you describe this route to infinity? Where will the arrows take you next?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

To avoid losing think of another very well known game where the patterns of play are similar.

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

What is the shape of wrapping paper that you would need to completely wrap this model?

Show that all pentagonal numbers are one third of a triangular number.

Can you mentally fit the 7 SOMA pieces together to make a cube? Can you do it in more than one way?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

On a clock the three hands - the second, minute and hour hands - are on the same axis. How often in a 24 hour day will the second hand be parallel to either of the two other hands?