To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you find a rule which connects consecutive triangular numbers?

Can you find a rule which relates triangular numbers to square numbers?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Every day at noon a boat leaves Le Havre for New York while another boat leaves New York for Le Havre. The ocean crossing takes seven days. How many boats will each boat cross during their journey?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Show that all pentagonal numbers are one third of a triangular number.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Can you describe this route to infinity? Where will the arrows take you next?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

Choose any two numbers. Call them a and b. Work out the arithmetic mean and the geometric mean. Which is bigger? Repeat for other pairs of numbers. What do you notice?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A package contains a set of resources designed to develop pupils' mathematical thinking. This package places a particular emphasis on “visualising” and is designed to meet the needs. . . .

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Jo made a cube from some smaller cubes, painted some of the faces of the large cube, and then took it apart again. 45 small cubes had no paint on them at all. How many small cubes did Jo use?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Can you find a way of representing these arrangements of balls?

What is the shape of wrapping paper that you would need to completely wrap this model?