P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

Show that all pentagonal numbers are one third of a triangular number.

Can you find a rule which connects consecutive triangular numbers?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

What can you see? What do you notice? What questions can you ask?

A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Glarsynost lives on a planet whose shape is that of a perfect regular dodecahedron. Can you describe the shortest journey she can make to ensure that she will see every part of the planet?

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Can you find a rule which relates triangular numbers to square numbers?

This is a simple version of an ancient game played all over the world. It is also called Mancala. What tactics will increase your chances of winning?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Four rods are hinged at their ends to form a convex quadrilateral. Investigate the different shapes that the quadrilateral can take. Be patient this problem may be slow to load.

A square of area 3 square units cannot be drawn on a 2D grid so that each of its vertices have integer coordinates, but can it be drawn on a 3D grid? Investigate squares that can be drawn.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

A circular plate rolls in contact with the sides of a rectangular tray. How much of its circumference comes into contact with the sides of the tray when it rolls around one circuit?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

This article outlines the underlying axioms of spherical geometry giving a simple proof that the sum of the angles of a triangle on the surface of a unit sphere is equal to pi plus the area of the. . . .

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Can you find a way of representing these arrangements of balls?

In the game of Noughts and Crosses there are 8 distinct winning lines. How many distinct winning lines are there in a game played on a 3 by 3 by 3 board, with 27 cells?