Can you find a rule which relates triangular numbers to square numbers?

Show that all pentagonal numbers are one third of a triangular number.

Anne completes a circuit around a circular track in 40 seconds. Brenda runs in the opposite direction and meets Anne every 15 seconds. How long does it take Brenda to run around the track?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

In this problem, we have created a pattern from smaller and smaller squares. If we carried on the pattern forever, what proportion of the image would be coloured blue?

Can you find a rule which connects consecutive triangular numbers?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Can you describe this route to infinity? Where will the arrows take you next?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Build gnomons that are related to the Fibonacci sequence and try to explain why this is possible.

Some students have been working out the number of strands needed for different sizes of cable. Can you make sense of their solutions?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

The triangle OMN has vertices on the axes with whole number co-ordinates. How many points with whole number coordinates are there on the hypotenuse MN?

Find the ratio of the outer shaded area to the inner area for a six pointed star and an eight pointed star.

Two motorboats travelling up and down a lake at constant speeds leave opposite ends A and B at the same instant, passing each other, for the first time 600 metres from A, and on their return, 400. . . .

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

How many ways can you write the word EUROMATHS by starting at the top left hand corner and taking the next letter by stepping one step down or one step to the right in a 5x5 array?

Two boats travel up and down a lake. Can you picture where they will cross if you know how fast each boat is travelling?

Discover a way to sum square numbers by building cuboids from small cubes. Can you picture how the sequence will grow?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Take a line segment of length 1. Remove the middle third. Remove the middle thirds of what you have left. Repeat infinitely many times, and you have the Cantor Set. Can you picture it?

A cyclist and a runner start off simultaneously around a race track each going at a constant speed. The cyclist goes all the way around and then catches up with the runner. He then instantly turns. . . .

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

Draw a pentagon with all the diagonals. This is called a pentagram. How many diagonals are there? How many diagonals are there in a hexagram, heptagram, ... Does any pattern occur when looking at. . . .

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .