Search by Topic

Resources tagged with Visualising similar to Journeying in Numberland:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 254 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Concrete Wheel

Stage: 3 Challenge Level: Challenge Level:1

A huge wheel is rolling past your window. What do you see?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Chess

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

Shady Symmetry

Stage: 3 Challenge Level: Challenge Level:1

How many different symmetrical shapes can you make by shading triangles or squares?

problem icon

Triangles to Tetrahedra

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Starting with four different triangles, imagine you have an unlimited number of each type. How many different tetrahedra can you make? Convince us you have found them all.

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Eight Hidden Squares

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Squares in Rectangles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

problem icon

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

An Unusual Shape

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you maximise the area available to a grazing goat?

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Playground Snapshot

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

problem icon

Triangle Inequality

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

problem icon

Square Coordinates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Coordinate Patterns

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

problem icon

Bands and Bridges: Bringing Topology Back

Stage: 2 and 3

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

problem icon

Endless Noughts and Crosses

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

problem icon

Hello Again

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Anne completes a circuit around a circular track in 40 seconds. Brenda runs in the opposite direction and meets Anne every 15 seconds. How long does it take Brenda to run around the track?

problem icon

Fence It

Stage: 3 Challenge Level: Challenge Level:1

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

problem icon

Multiplication Series: Illustrating Number Properties with Arrays

Stage: 1 and 2

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

problem icon

Reflecting Squarely

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you fit all three pieces together to make shapes with line symmetry?

problem icon

Tangram Paradox

Stage: 2 Challenge Level: Challenge Level:1

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

problem icon

Cubist Cuts

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

Tessellating Hexagons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Is it true that any convex hexagon will tessellate if it has a pair of opposite sides that are equal, and three adjacent angles that add up to 360 degrees?

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

Coloured Edges

Stage: 3 Challenge Level: Challenge Level:1

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

Isosceles Triangles

Stage: 3 Challenge Level: Challenge Level:1

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

problem icon

All in the Mind

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

problem icon

Put Yourself in a Box

Stage: 2 Challenge Level: Challenge Level:1

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

problem icon

Buses

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

problem icon

Zooming in on the Squares

Stage: 2 and 3

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

problem icon

Dice, Routes and Pathways

Stage: 1, 2 and 3

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

problem icon

Convex Polygons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

problem icon

Makeover

Stage: 1 and 2 Challenge Level: Challenge Level:2 Challenge Level:2

Exchange the positions of the two sets of counters in the least possible number of moves

problem icon

How Many Dice?

Stage: 3 Challenge Level: Challenge Level:1

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

problem icon

Right Time

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

problem icon

Taking Steps

Stage: 2 Challenge Level: Challenge Level:1

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

problem icon

Cutting a Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?