How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different triangles can you make on a circular pegboard that has nine pegs?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this telephone?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of Granma T?

Can you visualise what shape this piece of paper will make when it is folded?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Exchange the positions of the two sets of counters in the least possible number of moves

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outlines of these clocks?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Reasoning about the number of matches needed to build squares that share their sides.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Make a cube out of straws and have a go at this practical challenge.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?