Search by Topic

Resources tagged with Visualising similar to Three Neighbours:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 262 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Neighbours

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

problem icon

Music to My Ears

Stage: 2 Challenge Level: Challenge Level:1

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

problem icon

Multiplication Series: Illustrating Number Properties with Arrays

Stage: 1 and 2

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

problem icon

Colour Wheels

Stage: 2 Challenge Level: Challenge Level:1

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

problem icon

Take One Example

Stage: 1 and 2

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

problem icon

Counters

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

Putting Two and Two Together

Stage: 2 Challenge Level: Challenge Level:1

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

problem icon

Tetrafit

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

problem icon

Cogs

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

problem icon

Red Even

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

problem icon

Square It

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

problem icon

Waiting for Blast Off

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

problem icon

Dice, Routes and Pathways

Stage: 1, 2 and 3

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Knight's Swap

Stage: 2 Challenge Level: Challenge Level:1

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

problem icon

Single Track

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the best way to shunt these carriages so that each train can continue its journey?

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Shunting Puzzle

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

problem icon

Paw Prints

Stage: 2 Challenge Level: Challenge Level:1

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

problem icon

Cuboid-in-a-box

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?

problem icon

Square Corners

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

problem icon

Dodecamagic

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

problem icon

Picture a Pyramid ...

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

problem icon

Celtic Knot

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

problem icon

Four Triangles Puzzle

Stage: 1 and 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

problem icon

Map Folding

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

problem icon

Open Boxes

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

problem icon

Display Boards

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Design an arrangement of display boards in the school hall which fits the requirements of different people.

problem icon

Square it for Two

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

Square It game for an adult and child. Can you come up with a way of always winning this game?

problem icon

28 and It's Upward and Onward

Stage: 2 Challenge Level: Challenge Level:1

Can you find ways of joining cubes together so that 28 faces are visible?

problem icon

Cubes Within Cubes

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

problem icon

Instant Insanity

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

problem icon

Tangram Paradox

Stage: 2 Challenge Level: Challenge Level:1

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

problem icon

Endless Noughts and Crosses

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

problem icon

Zooming in on the Squares

Stage: 2 and 3

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

problem icon

Coloured Edges

Stage: 3 Challenge Level: Challenge Level:1

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

Hidden Squares

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

problem icon

Reflecting Squarely

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you fit all three pieces together to make shapes with line symmetry?

problem icon

Playground Snapshot

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

problem icon

Diagonal Dodge

Stage: 2 and 3 Challenge Level: Challenge Level:1

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

Rolling Triangle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

problem icon

Counting Cards

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

problem icon

Icosagram

Stage: 3 Challenge Level: Challenge Level:1

Draw a pentagon with all the diagonals. This is called a pentagram. How many diagonals are there? How many diagonals are there in a hexagram, heptagram, ... Does any pattern occur when looking at. . . .

problem icon

Redblue

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

problem icon

Trice

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?