A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

How many different symmetrical shapes can you make by shading triangles or squares?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

How many different triangles can you make on a circular pegboard that has nine pegs?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you find ways of joining cubes together so that 28 faces are visible?

Can you fit the tangram pieces into the outline of Mai Ling?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of these rabbits?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of this telephone?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Granma T?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you fit the tangram pieces into the outline of the child walking home from school?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you fit the tangram pieces into the outlines of these clocks?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Exchange the positions of the two sets of counters in the least possible number of moves

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

In how many ways can you fit all three pieces together to make shapes with line symmetry?