How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you find ways of joining cubes together so that 28 faces are visible?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

Can you fit the tangram pieces into the outline of this plaque design?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

What is the best way to shunt these carriages so that each train can continue its journey?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Fung at the table?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

What shape is made when you fold using this crease pattern? Can you make a ring design?

How many different symmetrical shapes can you make by shading triangles or squares?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of Granma T?

Can you visualise what shape this piece of paper will make when it is folded?

Make a flower design using the same shape made out of different sizes of paper.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?