Search by Topic

Resources tagged with Visualising similar to Jam and Egg Sandwich:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 259 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Intersecting Circles

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Cuboid Challenge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

problem icon

Chess

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Is There a Theorem?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Convex Polygons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

Threesomes

Stage: 3 Challenge Level: Challenge Level:1

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Marbles in a Box

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Introducing NRICH TWILGO

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Triangle Inequality

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

problem icon

Seven Squares

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

problem icon

Tessellating Hexagons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Which hexagons tessellate?

problem icon

Concrete Wheel

Stage: 3 Challenge Level: Challenge Level:1

A huge wheel is rolling past your window. What do you see?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Painting Cubes

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

problem icon

The Old Goats

Stage: 3 Challenge Level: Challenge Level:1

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

problem icon

Cutting a Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

problem icon

Instant Insanity

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

problem icon

Sprouts

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

problem icon

Conway's Chequerboard Army

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

problem icon

Pattern Power

Stage: 1, 2 and 3

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

problem icon

LOGO Challenge - Triangles-squares-stars

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

problem icon

Playground Snapshot

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

problem icon

Right Time

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

problem icon

How Many Dice?

Stage: 3 Challenge Level: Challenge Level:1

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

problem icon

LOGO Challenge - Circles as Animals

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

See if you can anticipate successive 'generations' of the two animals shown here.

problem icon

All in the Mind

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

problem icon

Ding Dong Bell

Stage: 3, 4 and 5

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

problem icon

Sea Defences

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

Keep Your Distance

Stage: 3 Challenge Level: Challenge Level:1

Can you mark 4 points on a flat surface so that there are only two different distances between them?

problem icon

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

problem icon

Zooming in on the Squares

Stage: 2 and 3

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

problem icon

Coloured Edges

Stage: 3 Challenge Level: Challenge Level:1

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

problem icon

John's Train Is on Time

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A train leaves on time. After it has gone 8 miles (at 33mph) the driver looks at his watch and sees that the hour hand is exactly over the minute hand. When did the train leave the station?

problem icon

Coordinate Patterns

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Bands and Bridges: Bringing Topology Back

Stage: 2 and 3

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

problem icon

An Unusual Shape

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you maximise the area available to a grazing goat?

problem icon

Buses

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?