Search by Topic

Resources tagged with Visualising similar to Wood Pile Perimeter:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 262 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

LOGO Challenge - Circles as Animals

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

See if you can anticipate successive 'generations' of the two animals shown here.

problem icon

LOGO Challenge - Triangles-squares-stars

Stage: 3 and 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

problem icon

Cubic Conundrum

Stage: 2, 3 and 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Which of the following cubes can be made from these nets?

problem icon

Triangles in the Middle

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

problem icon

Sprouts

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

problem icon

Convex Polygons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

problem icon

Painting Cubes

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

problem icon

Can You Explain Why?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain why it is impossible to construct this triangle?

problem icon

The Development of Spatial and Geometric Thinking: the Importance of Instruction.

Stage: 1 and 2

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

problem icon

Christmas Boxes

Stage: 3 Challenge Level: Challenge Level:1

Find all the ways to cut out a 'net' of six squares that can be folded into a cube.

problem icon

Baravelle

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

What can you see? What do you notice? What questions can you ask?

problem icon

All in the Mind

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

problem icon

The Old Goats

Stage: 3 Challenge Level: Challenge Level:1

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

problem icon

Tessellating Hexagons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Which hexagons tessellate?

problem icon

The Development of Spatial and Geometric Thinking: 5 to 18

Stage: 1, 2, 3 and 4

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

problem icon

Clocking Off

Stage: 2, 3 and 4 Challenge Level: Challenge Level:1

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

problem icon

Coloured Edges

Stage: 3 Challenge Level: Challenge Level:1

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

problem icon

Sea Defences

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

problem icon

Introducing NRICH TWILGO

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

problem icon

Getting an Angle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How can you make an angle of 60 degrees by folding a sheet of paper twice?

problem icon

Charting More Success

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

problem icon

Charting Success

Stage: 3 and 4 Challenge Level: Challenge Level:1

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

problem icon

Problem Solving, Using and Applying and Functional Mathematics

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

problem icon

You Owe Me Five Farthings, Say the Bells of St Martin's

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

Yih or Luk Tsut K'i or Three Men's Morris

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

problem icon

Travelling Salesman

Stage: 3 Challenge Level: Challenge Level:1

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

problem icon

Zooming in on the Squares

Stage: 2 and 3

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

problem icon

Diagonal Dodge

Stage: 2 and 3 Challenge Level: Challenge Level:1

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

problem icon

Coordinate Patterns

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Tetrahedra Tester

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

problem icon

Cubes Within Cubes

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Ding Dong Bell

Stage: 3, 4 and 5

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

problem icon

Paving Paths

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

problem icon

Dice, Routes and Pathways

Stage: 1, 2 and 3

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

problem icon

Right Time

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

At the time of writing the hour and minute hands of my clock are at right angles. How long will it be before they are at right angles again?

problem icon

Khun Phaen Escapes to Freedom

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

problem icon

Instant Insanity

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

problem icon

L-ateral Thinking

Stage: 1 and 2 Challenge Level: Challenge Level:2 Challenge Level:2

Try this interactive strategy game for 2

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

If you move the tiles around, can you make squares with different coloured edges?

problem icon

How Many Dice?

Stage: 3 Challenge Level: Challenge Level:1

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

problem icon

Keep Your Distance

Stage: 3 Challenge Level: Challenge Level:1

Can you mark 4 points on a flat surface so that there are only two different distances between them?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Square It

Stage: 3 and 4 Challenge Level: Challenge Level:1

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

problem icon

Shaping the Universe I - Planet Earth

Stage: 3 and 4

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Bands and Bridges: Bringing Topology Back

Stage: 2 and 3

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.