Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of the rocket?

What is the best way to shunt these carriages so that each train can continue its journey?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of this plaque design?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Exchange the positions of the two sets of counters in the least possible number of moves

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of these people?

What is the greatest number of squares you can make by overlapping three squares?

Exploring and predicting folding, cutting and punching holes and making spirals.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you find ways of joining cubes together so that 28 faces are visible?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

How many different triangles can you make on a circular pegboard that has nine pegs?