Can you make a 3x3 cube with these shapes made from small cubes?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

What shape is made when you fold using this crease pattern? Can you make a ring design?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Granma T?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Can you cut up a square in the way shown and make the pieces into a triangle?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

What is the greatest number of squares you can make by overlapping three squares?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the chairs?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you visualise what shape this piece of paper will make when it is folded?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Reasoning about the number of matches needed to build squares that share their sides.

Here's a simple way to make a Tangram without any measuring or ruling lines.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Make a cube out of straws and have a go at this practical challenge.

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the candle and sundial?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the workmen?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this goat and giraffe?