Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Can you make a 3x3 cube with these shapes made from small cubes?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of this telephone?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you fit the tangram pieces into the outline of Granma T?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Make a flower design using the same shape made out of different sizes of paper.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Little Ming?

Which of these dice are right-handed and which are left-handed?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

What is the greatest number of squares you can make by overlapping three squares?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of Mai Ling?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you cut up a square in the way shown and make the pieces into a triangle?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this junk?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these convex shapes?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Make a cube out of straws and have a go at this practical challenge.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the child walking home from school?