Can you find ways of joining cubes together so that 28 faces are visible?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

What is the best way to shunt these carriages so that each train can continue its journey?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you fit the tangram pieces into the outlines of the chairs?

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

What shape is made when you fold using this crease pattern? Can you make a ring design?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Here's a simple way to make a Tangram without any measuring or ruling lines.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outline of Granma T?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Exchange the positions of the two sets of counters in the least possible number of moves

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of this telephone?

Can you make a 3x3 cube with these shapes made from small cubes?

Can you fit the tangram pieces into the outlines of these people?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this junk?

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

Can you fit the tangram pieces into the outline of the rocket?