A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

A cylindrical helix is just a spiral on a cylinder, like an ordinary spring or the thread on a bolt. If I turn a left-handed helix over (top to bottom) does it become a right handed helix?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

How many different symmetrical shapes can you make by shading triangles or squares?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exchange the positions of the two sets of counters in the least possible number of moves

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Reasoning about the number of matches needed to build squares that share their sides.

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you make a 3x3 cube with these shapes made from small cubes?

Exploring and predicting folding, cutting and punching holes and making spirals.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Think of a number, square it and subtract your starting number. Is the number you’re left with odd or even? How do the images help to explain this?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you find ways of joining cubes together so that 28 faces are visible?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

In how many ways can you fit all three pieces together to make shapes with line symmetry?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

Make a cube out of straws and have a go at this practical challenge.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

What shape is made when you fold using this crease pattern? Can you make a ring design?