Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you make a 3x3 cube with these shapes made from small cubes?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of Mai Ling?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of these convex shapes?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

What is the greatest number of squares you can make by overlapping three squares?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this sports car?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of this telephone?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Exchange the positions of the two sets of counters in the least possible number of moves

Which of these dice are right-handed and which are left-handed?