Can you cut up a square in the way shown and make the pieces into a triangle?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this plaque design?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of Mai Ling?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Granma T?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Make a flower design using the same shape made out of different sizes of paper.

Exploring and predicting folding, cutting and punching holes and making spirals.

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This article for teachers describes a project which explores thepower of storytelling to convey concepts and ideas to children.

Can you fit the tangram pieces into the outline of Little Ming?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?