Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

See if you can anticipate successive 'generations' of the two animals shown here.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

What can you see? What do you notice? What questions can you ask?

What is the shape of wrapping paper that you would need to completely wrap this model?

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Square It game for an adult and child. Can you come up with a way of always winning this game?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Generate three random numbers to determine the side lengths of a triangle. What triangles can you draw?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you cut up a square in the way shown and make the pieces into a triangle?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

Here's a simple way to make a Tangram without any measuring or ruling lines.

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of the workmen?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

Make a cube out of straws and have a go at this practical challenge.