Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you predict when you'll be clapping and when you'll be clicking if you start this rhythm? How about when a friend begins a new rhythm at the same time?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

Can you fit the tangram pieces into the outlines of these clocks?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Can you fit the tangram pieces into the outlines of the chairs?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

What is the greatest number of squares you can make by overlapping three squares?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you cut up a square in the way shown and make the pieces into a triangle?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of this telephone?

Exchange the positions of the two sets of counters in the least possible number of moves

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this junk?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Granma T?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this goat and giraffe?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Which of these dice are right-handed and which are left-handed?