Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Exchange the positions of the two sets of counters in the least possible number of moves

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of Granma T?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

What is the greatest number of squares you can make by overlapping three squares?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of Mai Ling?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you cut up a square in the way shown and make the pieces into a triangle?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Make a cube out of straws and have a go at this practical challenge.

Here's a simple way to make a Tangram without any measuring or ruling lines.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outlines of the workmen?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.