Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.

Find all the ways to cut out a 'net' of six squares that can be folded into a cube.

A 3x3x3 cube may be reduced to unit cubes in six saw cuts. If after every cut you can rearrange the pieces before cutting straight through, can you do it in fewer?

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Four rods, two of length a and two of length b, are linked to form a kite. The linkage is moveable so that the angles change. What is the maximum area of the kite?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

ABC is an equilateral triangle and P is a point in the interior of the triangle. We know that AP = 3cm and BP = 4cm. Prove that CP must be less than 10 cm.

Anne completes a circuit around a circular track in 40 seconds. Brenda runs in the opposite direction and meets Anne every 15 seconds. How long does it take Brenda to run around the track?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

Given a 2 by 2 by 2 skeletal cube with one route `down' the cube. How many routes are there from A to B?

What can you see? What do you notice? What questions can you ask?

Bilbo goes on an adventure, before arriving back home. Using the information given about his journey, can you work out where Bilbo lives?

Triangles are formed by joining the vertices of a skeletal cube. How many different types of triangle are there? How many triangles altogether?

Can you find a way of representing these arrangements of balls?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

What is the shape of wrapping paper that you would need to completely wrap this model?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

Can you mark 4 points on a flat surface so that there are only two different distances between them?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?