In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

What can you see? What do you notice? What questions can you ask?

See if you can anticipate successive 'generations' of the two animals shown here.

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

What is the greatest number of squares you can make by overlapping three squares?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Square It game for an adult and child. Can you come up with a way of always winning this game?

What is the greatest number of counters you can place on the grid below without four of them lying at the corners of a square?

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

Rectangles are considered different if they vary in size or have different locations. How many different rectangles can be drawn on a chessboard?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Can you fit the tangram pieces into the outline of this goat and giraffe?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you fit the tangram pieces into the outline of this sports car?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

Can you fit the tangram pieces into the outline of these convex shapes?