See if you can anticipate successive 'generations' of the two animals shown here.

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Can you recreate these designs? What are the basic units? What movement is required between each unit? Some elegant use of procedures will help - variables not essential.

Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

What is the shape of wrapping paper that you would need to completely wrap this model?

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

How can you make an angle of 60 degrees by folding a sheet of paper twice?

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you make sense of the charts and diagrams that are created and used by sports competitors, trainers and statisticians?

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

You have 27 small cubes, 3 each of nine colours. Use the small cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of every colour.

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Watch these videos to see how Phoebe, Alice and Luke chose to draw 7 squares. How would they draw 100?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Which of these dice are right-handed and which are left-handed?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

Can you describe this route to infinity? Where will the arrows take you next?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

Can you fit the tangram pieces into the outlines of the workmen?