Three circles have a maximum of six intersections with each other. What is the maximum number of intersections that a hundred circles could have?

A cheap and simple toy with lots of mathematics. Can you interpret the images that are produced? Can you predict the pattern that will be produced using different wheels?

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Seven small rectangular pictures have one inch wide frames. The frames are removed and the pictures are fitted together like a jigsaw to make a rectangle of length 12 inches. Find the dimensions of. . . .

It is possible to dissect any square into smaller squares. What is the minimum number of squares a 13 by 13 square can be dissected into?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

Points P, Q, R and S each divide the sides AB, BC, CD and DA respectively in the ratio of 2 : 1. Join the points. What is the area of the parallelogram PQRS in relation to the original rectangle?

ABCDEFGH is a 3 by 3 by 3 cube. Point P is 1/3 along AB (that is AP : PB = 1 : 2), point Q is 1/3 along GH and point R is 1/3 along ED. What is the area of the triangle PQR?

In a right angled triangular field, three animals are tethered to posts at the midpoint of each side. Each rope is just long enough to allow the animal to reach two adjacent vertices. Only one animal. . . .

A rectangular field has two posts with a ring on top of each post. There are two quarrelsome goats and plenty of ropes which you can tie to their collars. How can you secure them so they can't. . . .

In a three-dimensional version of noughts and crosses, how many winning lines can you make?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

What size square corners should be cut from a square piece of paper to make a box with the largest possible volume?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

See if you can anticipate successive 'generations' of the two animals shown here.

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

How many moves does it take to swap over some red and blue frogs? Do you have a method?

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

How many different symmetrical shapes can you make by shading triangles or squares?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you describe this route to infinity? Where will the arrows take you next?

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

A 2 by 3 rectangle contains 8 squares and a 3 by 4 rectangle contains 20 squares. What size rectangle(s) contain(s) exactly 100 squares? Can you find them all?

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

ABCD is a regular tetrahedron and the points P, Q, R and S are the midpoints of the edges AB, BD, CD and CA. Prove that PQRS is a square.

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.