Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Exchange the positions of the two sets of counters in the least possible number of moves

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you make a 3x3 cube with these shapes made from small cubes?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How many different triangles can you make on a circular pegboard that has nine pegs?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of these clocks?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you fit the tangram pieces into the outline of this telephone?