Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Exchange the positions of the two sets of counters in the least possible number of moves

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Mai Ling?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

Which of these dice are right-handed and which are left-handed?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Make a cube out of straws and have a go at this practical challenge.

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you make a 3x3 cube with these shapes made from small cubes?

Can you cut up a square in the way shown and make the pieces into a triangle?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this telephone?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Ming?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of this junk?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Can you fit the tangram pieces into the outlines of the workmen?