A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Is it true that any convex hexagon will tessellate if it has a pair of opposite sides that are equal, and three adjacent angles that add up to 360 degrees?

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

A cylindrical helix is just a spiral on a cylinder, like an ordinary spring or the thread on a bolt. If I turn a left-handed helix over (top to bottom) does it become a right handed helix?

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

A triangle ABC resting on a horizontal line is "rolled" along the line. Describe the paths of each of the vertices and the relationships between them and the original triangle.

How many different symmetrical shapes can you make by shading triangles or squares?

Can you explain why it is impossible to construct this triangle?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you fit the tangram pieces into the outline of Little Ming?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This article explores ths history of theories about the shape of our planet. It is the first in a series of articles looking at the significance of geometric shapes in the history of astronomy.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

In how many ways can you fit all three pieces together to make shapes with line symmetry?

Can you fit the tangram pieces into the outline of Granma T?

The second in a series of articles on visualising and modelling shapes in the history of astronomy.

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

Can you fit the tangram pieces into the outline of the child walking home from school?

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you fit the tangram pieces into the outline of this telephone?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Exchange the positions of the two sets of counters in the least possible number of moves

How many different ways can I lay 10 paving slabs, each 2 foot by 1 foot, to make a path 2 foot wide and 10 foot long from my back door into my garden, without cutting any of the paving slabs?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these clocks?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outline of this sports car?