Search by Topic

Resources tagged with Visualising similar to Going Places with Mathematicians:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 254 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Penta Play

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Hexpentas

Stage: 1 and 2 Challenge Level: Challenge Level:1

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

problem icon

Reflecting Squarely

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you fit all three pieces together to make shapes with line symmetry?

problem icon

Travelling Salesman

Stage: 3 Challenge Level: Challenge Level:1

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

problem icon

Shape Mapping

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

problem icon

Turning Triangles

Stage: 3 Challenge Level: Challenge Level:1

A triangle ABC resting on a horizontal line is "rolled" along the line. Describe the paths of each of the vertices and the relationships between them and the original triangle.

problem icon

Bands and Bridges: Bringing Topology Back

Stage: 2 and 3

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

problem icon

Weighty Problem

Stage: 3 Challenge Level: Challenge Level:1

The diagram shows a very heavy kitchen cabinet. It cannot be lifted but it can be pivoted around a corner. The task is to move it, without sliding, in a series of turns about the corners so that it. . . .

problem icon

Screwed-up

Stage: 3 Challenge Level: Challenge Level:1

A cylindrical helix is just a spiral on a cylinder, like an ordinary spring or the thread on a bolt. If I turn a left-handed helix over (top to bottom) does it become a right handed helix?

problem icon

L-ateral Thinking

Stage: 1 and 2 Challenge Level: Challenge Level:2 Challenge Level:2

Try this interactive strategy game for 2

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Shady Symmetry

Stage: 3 Challenge Level: Challenge Level:1

How many different symmetrical shapes can you make by shading triangles or squares?

problem icon

Khun Phaen Escapes to Freedom

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

problem icon

Counting Triangles

Stage: 3 Challenge Level: Challenge Level:1

Triangles are formed by joining the vertices of a skeletal cube. How many different types of triangle are there? How many triangles altogether?

problem icon

Let Us Reflect

Stage: 2 Challenge Level: Challenge Level:1

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

problem icon

Dice, Routes and Pathways

Stage: 1, 2 and 3

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

problem icon

Peg Rotation

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

problem icon

Sprouts

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

problem icon

Coloured Edges

Stage: 3 Challenge Level: Challenge Level:1

The whole set of tiles is used to make a square. This has a green and blue border. There are no green or blue tiles anywhere in the square except on this border. How many tiles are there in the set?

problem icon

The Development of Spatial and Geometric Thinking: 5 to 18

Stage: 1, 2, 3 and 4

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

problem icon

Is There a Theorem?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Conway's Chequerboard Army

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

problem icon

Ding Dong Bell

Stage: 3, 4 and 5

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

problem icon

Take One Example

Stage: 1 and 2

This article introduces the idea of generic proof for younger children and illustrates how one example can offer a proof of a general result through unpacking its underlying structure.

problem icon

John's Train Is on Time

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A train leaves on time. After it has gone 8 miles (at 33mph) the driver looks at his watch and sees that the hour hand is exactly over the minute hand. When did the train leave the station?

problem icon

Redblue

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

problem icon

Square to L

Stage: 2 Challenge Level: Challenge Level:1

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

problem icon

Triangular Tantaliser

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Draw all the possible distinct triangles on a 4 x 4 dotty grid. Convince me that you have all possible triangles.

problem icon

Flip

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

problem icon

Can You Explain Why?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you explain why it is impossible to construct this triangle?

problem icon

Chess

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

What would be the smallest number of moves needed to move a Knight from a chess set from one corner to the opposite corner of a 99 by 99 square board?

problem icon

The Cantor Set

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Take a line segment of length 1. Remove the middle third. Remove the middle thirds of what you have left. Repeat infinitely many times, and you have the Cantor Set. Can you picture it?

problem icon

Rolling Triangle

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

The triangle ABC is equilateral. The arc AB has centre C, the arc BC has centre A and the arc CA has centre B. Explain how and why this shape can roll along between two parallel tracks.

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

Instant Insanity

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

problem icon

Coordinate Patterns

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

problem icon

Buses

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A bus route has a total duration of 40 minutes. Every 10 minutes, two buses set out, one from each end. How many buses will one bus meet on its way from one end to the other end?

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Making Tangrams

Stage: 2 Challenge Level: Challenge Level:1

Here's a simple way to make a Tangram without any measuring or ruling lines.

problem icon

Turning Cogs

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

problem icon

The Development of Spatial and Geometric Thinking: the Importance of Instruction.

Stage: 1 and 2

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

problem icon

Put Yourself in a Box

Stage: 2 Challenge Level: Challenge Level:1

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

problem icon

Seven Squares - Group-worthy Task

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

problem icon

World of Tan 14 - Celebrations

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

problem icon

Sliding Puzzle

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

problem icon

Square It

Stage: 1, 2, 3 and 4 Challenge Level: Challenge Level:1

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

problem icon

Multiplication Series: Illustrating Number Properties with Arrays

Stage: 1 and 2

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .