Search by Topic

Resources tagged with Visualising similar to The Königsberg Bridge Problem:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 262 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Bands and Bridges: Bringing Topology Back

Stage: 2 and 3

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

problem icon

Travelling Salesman

Stage: 3 Challenge Level: Challenge Level:1

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

Instant Insanity

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Tic Tac Toe

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In the game of Noughts and Crosses there are 8 distinct winning lines. How many distinct winning lines are there in a game played on a 3 by 3 by 3 board, with 27 cells?

problem icon

Introducing NRICH TWILGO

Stage: 1, 2, 3, 4 and 5 Challenge Level: Challenge Level:1

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

problem icon

Soma - So Good

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you mentally fit the 7 SOMA pieces together to make a cube? Can you do it in more than one way?

problem icon

Drilling Many Cubes

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A useful visualising exercise which offers opportunities for discussion and generalising, and which could be used for thinking about the formulae needed for generating the results on a spreadsheet.

problem icon

Euromaths

Stage: 3 Challenge Level: Challenge Level:1

How many ways can you write the word EUROMATHS by starting at the top left hand corner and taking the next letter by stepping one step down or one step to the right in a 5x5 array?

problem icon

The Development of Spatial and Geometric Thinking: 5 to 18

Stage: 1, 2, 3 and 4

This is the first article in a series which aim to provide some insight into the way spatial thinking develops in children, and draw on a range of reported research. The focus of this article is the. . . .

problem icon

Take Ten

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Is it possible to remove ten unit cubes from a 3 by 3 by 3 cube made from 27 unit cubes so that the surface area of the remaining solid is the same as the surface area of the original 3 by 3 by 3. . . .

problem icon

Painting Cubes

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine you have six different colours of paint. You paint a cube using a different colour for each of the six faces. How many different cubes can be painted using the same set of six colours?

problem icon

How Many Dice?

Stage: 3 Challenge Level: Challenge Level:1

A standard die has the numbers 1, 2 and 3 are opposite 6, 5 and 4 respectively so that opposite faces add to 7? If you make standard dice by writing 1, 2, 3, 4, 5, 6 on blank cubes you will find. . . .

problem icon

Convex Polygons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

problem icon

Ding Dong Bell

Stage: 3, 4 and 5

The reader is invited to investigate changes (or permutations) in the ringing of church bells, illustrated by braid diagrams showing the order in which the bells are rung.

problem icon

Cube Paths

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Given a 2 by 2 by 2 skeletal cube with one route `down' the cube. How many routes are there from A to B?

problem icon

Cutting a Cube

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

problem icon

Dice, Routes and Pathways

Stage: 1, 2 and 3

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

problem icon

Redblue

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

problem icon

Icosian Game

Stage: 3 Challenge Level: Challenge Level:1

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

problem icon

More Pebbles

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Have a go at this 3D extension to the Pebbles problem.

problem icon

Christmas Boxes

Stage: 3 Challenge Level: Challenge Level:1

Find all the ways to cut out a 'net' of six squares that can be folded into a cube.

problem icon

Sprouts

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

problem icon

Eight Hidden Squares

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

Little Boxes

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

problem icon

Air Nets

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:1

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

problem icon

World of Tan 13 - A Storm in a Tea Cup

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outline of these convex shapes?

problem icon

Making Maths: Rolypoly

Stage: 1 and 2 Challenge Level: Challenge Level:1

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

problem icon

Conway's Chequerboard Army

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

problem icon

Playground Snapshot

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

The image in this problem is part of a piece of equipment found in the playground of a school. How would you describe it to someone over the phone?

problem icon

Reflecting Squarely

Stage: 3 Challenge Level: Challenge Level:1

In how many ways can you fit all three pieces together to make shapes with line symmetry?

problem icon

Counting Cards

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

problem icon

World of Tan 8 - Sports Car

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outline of this sports car?

problem icon

Nine Colours

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

problem icon

Muggles Magic

Stage: 3 Challenge Level: Challenge Level:1

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

John's Train Is on Time

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A train leaves on time. After it has gone 8 miles (at 33mph) the driver looks at his watch and sees that the hour hand is exactly over the minute hand. When did the train leave the station?

problem icon

Threesomes

Stage: 3 Challenge Level: Challenge Level:1

Imagine an infinitely large sheet of square dotty paper on which you can draw triangles of any size you wish (providing each vertex is on a dot). What areas is it/is it not possible to draw?

problem icon

Move Those Halves

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

problem icon

Pattern Power

Stage: 1, 2 and 3

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

problem icon

World of Tan 6 - Junk

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outline of this junk?

problem icon

World of Tan 26 - Old Chestnut

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

problem icon

World of Tan 25 - Pentominoes

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outlines of these people?

problem icon

Cubes Within Cubes

Stage: 2 and 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

problem icon

World of Tan 11 - the Past, Present and Future

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outline of the telescope and microscope?

problem icon

World of Tan 27 - Sharing

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you fit the tangram pieces into the outline of Little Fung at the table?

problem icon

Quadrilaterals

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?