Search by Topic

Resources tagged with Visualising similar to The Lily Pond:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 254 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Visualising

problem icon

Paw Prints

Stage: 2 Challenge Level: Challenge Level:1

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

problem icon

Tourism

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

problem icon

Fence It

Stage: 3 Challenge Level: Challenge Level:1

If you have only 40 metres of fencing available, what is the maximum area of land you can fence off?

problem icon

Coded Hundred Square

Stage: 2 Challenge Level: Challenge Level:1

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

problem icon

Eight Hidden Squares

Stage: 2 and 3 Challenge Level: Challenge Level:2 Challenge Level:2

On the graph there are 28 marked points. These points all mark the vertices (corners) of eight hidden squares. Can you find the eight hidden squares?

problem icon

Flight of the Flibbins

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Blue Flibbins are so jealous of their red partners that they will not leave them on their own with any other bue Flibbin. What is the quickest way of getting the five pairs of Flibbins safely to. . . .

problem icon

Cubes Within Cubes

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

problem icon

Quadrilaterals

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

problem icon

Picturing Triangle Numbers

Stage: 3 Challenge Level: Challenge Level:1

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

problem icon

Shady Symmetry

Stage: 3 Challenge Level: Challenge Level:1

How many different symmetrical shapes can you make by shading triangles or squares?

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

An Unusual Shape

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you maximise the area available to a grazing goat?

problem icon

Trace the Edges

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

Redblue

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

problem icon

Isosceles Triangles

Stage: 3 Challenge Level: Challenge Level:1

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

problem icon

Waiting for Blast Off

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

problem icon

Knight's Swap

Stage: 2 Challenge Level: Challenge Level:1

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

problem icon

Single Track

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the best way to shunt these carriages so that each train can continue its journey?

problem icon

Shunting Puzzle

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

problem icon

Three Cubed

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make a 3x3 cube with these shapes made from small cubes?

problem icon

Instant Insanity

Stage: 3, 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

problem icon

Picturing Square Numbers

Stage: 3 Challenge Level: Challenge Level:1

Square numbers can be represented as the sum of consecutive odd numbers. What is the sum of 1 + 3 + ..... + 149 + 151 + 153?

problem icon

Nine-pin Triangles

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

How many different triangles can you make on a circular pegboard that has nine pegs?

problem icon

Dodecamagic

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

problem icon

Map Folding

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

problem icon

Konigsberg Plus

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

problem icon

Putting Two and Two Together

Stage: 2 Challenge Level: Challenge Level:1

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

problem icon

Sprouts

Stage: 2, 3, 4 and 5 Challenge Level: Challenge Level:2 Challenge Level:2

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

problem icon

Cubes Within Cubes Revisited

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Imagine starting with one yellow cube and covering it all over with a single layer of red cubes, and then covering that cube with a layer of blue cubes. How many red and blue cubes would you need?

problem icon

Domino Numbers

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

problem icon

Little Boxes

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

problem icon

Hexpentas

Stage: 1 and 2 Challenge Level: Challenge Level:1

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

problem icon

Celtic Knot

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

problem icon

Christmas Chocolates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

How could Penny, Tom and Matthew work out how many chocolates there are in different sized boxes?

problem icon

Mystic Rose

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Use the animation to help you work out how many lines are needed to draw mystic roses of different sizes.

problem icon

Square Coordinates

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

problem icon

Ten Hidden Squares

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

problem icon

On the Edge

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are four tiles. They can be arranged in a 2 by 2 square so that this large square has a green edge. If the tiles are moved around, we can make a 2 by 2 square with a blue edge... Now try to. . . .

problem icon

Move a Match

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

How can you arrange these 10 matches in four piles so that when you move one match from three of the piles into the fourth, you end up with the same arrangement?

problem icon

Travelling Salesman

Stage: 3 Challenge Level: Challenge Level:1

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

problem icon

Dice, Routes and Pathways

Stage: 1, 2 and 3

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

problem icon

Coordinate Patterns

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Charlie and Alison have been drawing patterns on coordinate grids. Can you picture where the patterns lead?

problem icon

Fred the Class Robot

Stage: 2 Challenge Level: Challenge Level:2 Challenge Level:2

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

problem icon

Cuboids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find a cuboid (with edges of integer values) that has a surface area of exactly 100 square units. Is there more than one? Can you find them all?

problem icon

Bands and Bridges: Bringing Topology Back

Stage: 2 and 3

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

problem icon

Painted Cube

Stage: 3 Challenge Level: Challenge Level:1

Imagine a large cube made from small red cubes being dropped into a pot of yellow paint. How many of the small cubes will have yellow paint on their faces?

problem icon

Counting Cards

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

problem icon

Tetrahedron Faces

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

One face of a regular tetrahedron is painted blue and each of the remaining faces are painted using one of the colours red, green or yellow. How many different possibilities are there?

problem icon

Cuboid-in-a-box

Stage: 2 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

What is the smallest cuboid that you can put in this box so that you cannot fit another that's the same into it?