A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

Can you fit the tangram pieces into the outlines of these people?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

How many different symmetrical shapes can you make by shading triangles or squares?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you cut up a square in the way shown and make the pieces into a triangle?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you find ways of joining cubes together so that 28 faces are visible?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of Granma T?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?