What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Think of a number, square it and subtract your starting number. Is the number youâ€™re left with odd or even? How do the images help to explain this?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Reasoning about the number of matches needed to build squares that share their sides.

Make a cube out of straws and have a go at this practical challenge.

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Can you fit the tangram pieces into the outline of the child walking home from school?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Exchange the positions of the two sets of counters in the least possible number of moves

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you cut up a square in the way shown and make the pieces into a triangle?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Exploring and predicting folding, cutting and punching holes and making spirals.

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outlines of these clocks?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Granma T?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming?

What shape is made when you fold using this crease pattern? Can you make a ring design?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

This article for teachers describes a project which explores thepower of storytelling to convey concepts and ideas to children.

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outline of this junk?