You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Exchange the positions of the two sets of counters in the least possible number of moves

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Ming?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you visualise what shape this piece of paper will make when it is folded?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Can you cut up a square in the way shown and make the pieces into a triangle?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

What is the greatest number of squares you can make by overlapping three squares?

Reasoning about the number of matches needed to build squares that share their sides.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you fit the tangram pieces into the outlines of these people?

Can you make a 3x3 cube with these shapes made from small cubes?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of these convex shapes?

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Can you fit the tangram pieces into the outline of this junk?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

Can you fit the tangram pieces into the outline of this sports car?

Here's a simple way to make a Tangram without any measuring or ruling lines.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Make a cube out of straws and have a go at this practical challenge.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outline of this goat and giraffe?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of these rabbits?