Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

Can you visualise what shape this piece of paper will make when it is folded?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

What is the total area of the four outside triangles which are outlined in red in this arrangement of squares inside each other?

Reasoning about the number of matches needed to build squares that share their sides.

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

I've made some cubes and some cubes with holes in. This challenge invites you to explore the difference in the number of small cubes I've used. Can you see any patterns?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of the rocket?

Here are the six faces of a cube - in no particular order. Here are three views of the cube. Can you deduce where the faces are in relation to each other and record them on the net of this cube?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Can you make a 3x3 cube with these shapes made from small cubes?

Can you cut up a square in the way shown and make the pieces into a triangle?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of Mai Ling?

Choose a box and work out the smallest rectangle of paper needed to wrap it so that it is completely covered.

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

What is the greatest number of squares you can make by overlapping three squares?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outline of this plaque design?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

On which of these shapes can you trace a path along all of its edges, without going over any edge twice?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Make a flower design using the same shape made out of different sizes of paper.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outlines of the workmen?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Can you fit the tangram pieces into the outlines of these clocks?