A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

Can you fit the tangram pieces into the outline of Granma T?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you find ways of joining cubes together so that 28 faces are visible?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Little Ming?

Can you work out what kind of rotation produced this pattern of pegs in our pegboard?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this telephone?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of this plaque design?

Can you cut up a square in the way shown and make the pieces into a triangle?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of these convex shapes?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this sports car?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the telescope and microscope?