Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you visualise what shape this piece of paper will make when it is folded?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you cut up a square in the way shown and make the pieces into a triangle?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Make a flower design using the same shape made out of different sizes of paper.

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of Little Fung at the table?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

Can you fit the tangram pieces into the outline of Mai Ling?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

What is the best way to shunt these carriages so that each train can continue its journey?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these clocks?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Make a cube out of straws and have a go at this practical challenge.

Can you fit the tangram pieces into the outline of this sports car?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this junk?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of the rocket?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these rabbits?