A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Can you fit the tangram pieces into the outline of Little Ming?

I found these clocks in the Arts Centre at the University of Warwick intriguing - do they really need four clocks and what times would be ambiguous with only two or three of them?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

This task depends on groups working collaboratively, discussing and reasoning to agree a final product.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

A half-cube is cut into two pieces by a plane through the long diagonal and at right angles to it. Can you draw a net of these pieces? Are they identical?

Can you fit the tangram pieces into the outlines of the chairs?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

A Hamiltonian circuit is a continuous path in a graph that passes through each of the vertices exactly once and returns to the start. How many Hamiltonian circuits can you find in these graphs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

An irregular tetrahedron is composed of four different triangles. Can such a tetrahedron be constructed where the side lengths are 4, 5, 6, 7, 8 and 9 units of length?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you fit the tangram pieces into the outlines of these people?

Exchange the positions of the two sets of counters in the least possible number of moves

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Imagine you are suspending a cube from one vertex (corner) and allowing it to hang freely. Now imagine you are lowering it into water until it is exactly half submerged. What shape does the surface. . . .

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of the child walking home from school?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Square It game for an adult and child. Can you come up with a way of always winning this game?

What is the shape of wrapping paper that you would need to completely wrap this model?

What can you see? What do you notice? What questions can you ask?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this junk?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Can you fit the tangram pieces into the outlines of the workmen?