A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

What is the relationship between these first two shapes? Which shape relates to the third one in the same way? Can you explain why?

A cylindrical helix is just a spiral on a cylinder, like an ordinary spring or the thread on a bolt. If I turn a left-handed helix over (top to bottom) does it become a right handed helix?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

Can you shunt the trucks so that the Cattle truck and the Sheep truck change places and the Engine is back on the main line?

What is the best way to shunt these carriages so that each train can continue its journey?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Can you find ways of joining cubes together so that 28 faces are visible?

Building up a simple Celtic knot. Try the interactivity or download the cards or have a go on squared paper.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

How can you arrange the 5 cubes so that you need the smallest number of Brush Loads of paint to cover them? Try with other numbers of cubes as well.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

How many DIFFERENT quadrilaterals can be made by joining the dots on the 8-point circle?

How many different symmetrical shapes can you make by shading triangles or squares?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Where can you put the mirror across the square so that you can still "see" the whole square? How many different positions are possible?

Can you dissect a square into: 4, 7, 10, 13... other squares? 6, 9, 12, 15... other squares? 8, 11, 14... other squares?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you visualise what shape this piece of paper will make when it is folded?

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

In how many ways can you fit all three pieces together to make shapes with line symmetry?

Can you fit the tangram pieces into the outlines of these clocks?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

Exchange the positions of the two sets of counters in the least possible number of moves

How many different triangles can you make on a circular pegboard that has nine pegs?

Here you see the front and back views of a dodecahedron. Each vertex has been numbered so that the numbers around each pentagonal face add up to 65. Can you find all the missing numbers?

Can you picture where this letter "F" will be on the grid if you flip it in these different ways?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?