Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Exchange the positions of the two sets of counters in the least possible number of moves

Can you fit the tangram pieces into the outline of Little Ming?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Move just three of the circles so that the triangle faces in the opposite direction.

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you make a 3x3 cube with these shapes made from small cubes?

What happens when you try and fit the triomino pieces into these two grids?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of these rabbits?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

How many pieces of string have been used in these patterns? Can you describe how you know?

Can you fit the tangram pieces into the outline of these convex shapes?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

What happens to the area of a square if you double the length of the sides? Try the same thing with rectangles, diamonds and other shapes. How do the four smaller ones fit into the larger one?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this junk?

How many loops of string have been used to make these patterns?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Can you fit the tangram pieces into the outlines of these clocks?