An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of Little Ming?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Exchange the positions of the two sets of counters in the least possible number of moves

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Move just three of the circles so that the triangle faces in the opposite direction.

Square It game for an adult and child. Can you come up with a way of always winning this game?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

What happens when you try and fit the triomino pieces into these two grids?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the child walking home from school?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

What is the greatest number of squares you can make by overlapping three squares?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

In each of the pictures the invitation is for you to: Count what you see. Identify how you think the pattern would continue.

A game for 2 people. Take turns joining two dots, until your opponent is unable to move.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Start with a large square, join the midpoints of its sides, you'll see four right angled triangles. Remove these triangles, a second square is left. Repeat the operation. What happens?

These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This article for teachers discusses examples of problems in which there is no obvious method but in which children can be encouraged to think deeply about the context and extend their ability to. . . .

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Mai Ling?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

Can you find a way of representing these arrangements of balls?

Lyndon Baker describes how the Mobius strip and Euler's law can introduce pupils to the idea of topology.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?