Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

This problem invites you to build 3D shapes using two different triangles. Can you make the shapes from the pictures?

Can you fit the tangram pieces into the outline of Mai Ling?

In how many ways can you fit two of these yellow triangles together? Can you predict the number of ways two blue triangles can be fitted together?

What is the greatest number of squares you can make by overlapping three squares?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

Can you fit the tangram pieces into the outline of these convex shapes?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outlines of the chairs?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

What shape is made when you fold using this crease pattern? Can you make a ring design?

Make a flower design using the same shape made out of different sizes of paper.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Can you split each of the shapes below in half so that the two parts are exactly the same?

Exploring and predicting folding, cutting and punching holes and making spirals.

Can you find ways of joining cubes together so that 28 faces are visible?

What are the next three numbers in this sequence? Can you explain why are they called pyramid numbers?

What shape has Harry drawn on this clock face? Can you find its area? What is the largest number of square tiles that could cover this area?

Draw three straight lines to separate these shapes into four groups - each group must contain one of each shape.