Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Can you fit the tangram pieces into the outline of Mai Ling?

What happens when you try and fit the triomino pieces into these two grids?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you fit the tangram pieces into the outline of this telephone?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

What is the shape of wrapping paper that you would need to completely wrap this model?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Find your way through the grid starting at 2 and following these operations. What number do you end on?