These are pictures of the sea defences at New Brighton. Can you work out what a basic shape might be in both images of the sea wall and work out a way they might fit together?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

A dog is looking for a good place to bury his bone. Can you work out where he started and ended in each case? What possible routes could he have taken?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you cut up a square in the way shown and make the pieces into a triangle?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

This task, written for the National Young Mathematicians' Award 2016, involves open-topped boxes made with interlocking cubes. Explore the number of units of paint that are needed to cover the boxes. . . .

Can you make a 3x3 cube with these shapes made from small cubes?

Billy's class had a robot called Fred who could draw with chalk held underneath him. What shapes did the pupils make Fred draw?

We're excited about this new program for drawing beautiful mathematical designs. Can you work out how we made our first few pictures and, even better, share your most elegant solutions with us?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Have a look at what happens when you pull a reef knot and a granny knot tight. Which do you think is best for securing things together? Why?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outline of these convex shapes?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

These points all mark the vertices (corners) of ten hidden squares. Can you find the 10 hidden squares?

Each of the nets of nine solid shapes has been cut into two pieces. Can you see which pieces go together?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

You have been given three shapes made out of sponge: a sphere, a cylinder and a cone. Your challenge is to find out how to cut them to make different shapes for printing.

Can you fit the tangram pieces into the outline of these rabbits?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

Can you fit the tangram pieces into the outline of this plaque design?

Reasoning about the number of matches needed to build squares that share their sides.

Can you arrange the shapes in a chain so that each one shares a face (or faces) that are the same shape as the one that follows it?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you fit the tangram pieces into the outlines of the workmen?

Here are shadows of some 3D shapes. What shapes could have made them?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you cut a regular hexagon into two pieces to make a parallelogram? Try cutting it into three pieces to make a rhombus!

Which of these dice are right-handed and which are left-handed?

This article for teachers describes how modelling number properties involving multiplication using an array of objects not only allows children to represent their thinking with concrete materials,. . . .

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?