Move just three of the circles so that the triangle faces in the opposite direction.

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

A magician took a suit of thirteen cards and held them in his hand face down. Every card he revealed had the same value as the one he had just finished spelling. How did this work?

How many different triangles can you make on a circular pegboard that has nine pegs?

Imagine a pyramid which is built in square layers of small cubes. If we number the cubes from the top, starting with 1, can you picture which cubes are directly below this first cube?

Make one big triangle so the numbers that touch on the small triangles add to 10. You could use the interactivity to help you.

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

In a square in which the houses are evenly spaced, numbers 3 and 10 are opposite each other. What is the smallest and what is the largest possible number of houses in the square?

What happens when you try and fit the triomino pieces into these two grids?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

An activity centred around observations of dots and how we visualise number arrangement patterns.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Here are shadows of some 3D shapes. What shapes could have made them?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Which of these dice are right-handed and which are left-handed?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Can you fit the tangram pieces into the outlines of these clocks?

We start with one yellow cube and build around it to make a 3x3x3 cube with red cubes. Then we build around that red cube with blue cubes and so on. How many cubes of each colour have we used?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Find your way through the grid starting at 2 and following these operations. What number do you end on?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Mathematics is the study of patterns. Studying pattern is an opportunity to observe, hypothesise, experiment, discover and create.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this plaque design?