We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you describe a piece of paper clearly enough for your partner to know which piece it is?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outlines of the workmen?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outline of the rocket?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

How many different ways can you find of fitting five hexagons together? How will you know you have found all the ways?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you find ways of joining cubes together so that 28 faces are visible?

Exploring and predicting folding, cutting and punching holes and making spirals.

Design an arrangement of display boards in the school hall which fits the requirements of different people.

Can you work out how many cubes were used to make this open box? What size of open box could you make if you had 112 cubes?

Create a pattern on the left-hand grid. How could you extend your pattern on the right-hand grid?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Can you visualise what shape this piece of paper will make when it is folded?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this junk?