Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

Make a flower design using the same shape made out of different sizes of paper.

Can you work out what shape is made by folding in this way? Why not create some patterns using this shape but in different sizes?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this junk?

Can you fit the tangram pieces into the outline of this goat and giraffe?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

Can you fit the tangram pieces into the outline of the rocket?

Looking at the picture of this Jomista Mat, can you decribe what you see? Why not try and make one yourself?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

Can you cut up a square in the way shown and make the pieces into a triangle?

Use the lines on this figure to show how the square can be divided into 2 halves, 3 thirds, 6 sixths and 9 ninths.

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this plaque design?

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outlines of the candle and sundial?

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Make a cube out of straws and have a go at this practical challenge.

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of Mai Ling?

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

This practical problem challenges you to make quadrilaterals with a loop of string. You'll need some friends to help!

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

For this task, you'll need an A4 sheet and two A5 transparent sheets. Decide on a way of arranging the A5 sheets on top of the A4 sheet and explore ...

Can you visualise what shape this piece of paper will make when it is folded?

Design an arrangement of display boards in the school hall which fits the requirements of different people.

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.