Imagine a 3 by 3 by 3 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will have holes drilled through them?

Eight children each had a cube made from modelling clay. They cut them into four pieces which were all exactly the same shape and size. Whose pieces are the same? Can you decide who made each set?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Find a way to cut a 4 by 4 square into only two pieces, then rejoin the two pieces to make an L shape 6 units high.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Here are more buildings to picture in your mind's eye. Watch out - they become quite complicated!

What is the greatest number of squares you can make by overlapping three squares?

How can you paint the faces of these eight cubes so they can be put together to make a 2 x 2 cube that is green all over AND a 2 x 2 cube that is yellow all over?

A game has a special dice with a colour spot on each face. These three pictures show different views of the same dice. What colour is opposite blue?

Imagine a 4 by 4 by 4 cube. If you and a friend drill holes in some of the small cubes in the ways described, how many will not have holes drilled through them?

Exchange the positions of the two sets of counters in the least possible number of moves

How many loops of string have been used to make these patterns?

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

How many pieces of string have been used in these patterns? Can you describe how you know?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Imagine a 3 by 3 by 3 cube made of 9 small cubes. Each face of the large cube is painted a different colour. How many small cubes will have two painted faces? Where are they?

This article looks at levels of geometric thinking and the types of activities required to develop this thinking.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Can you fit the tangram pieces into the outlines of the chairs?

Move just three of the circles so that the triangle faces in the opposite direction.

Here's a simple way to make a Tangram without any measuring or ruling lines.

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you cut up a square in the way shown and make the pieces into a triangle?

A hundred square has been printed on both sides of a piece of paper. What is on the back of 100? 58? 23? 19?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Which of these dice are right-handed and which are left-handed?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the candle and sundial?

How many balls of modelling clay and how many straws does it take to make these skeleton shapes?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Fung at the table?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

This second article in the series refers to research about levels of development of spatial thinking and the possible influence of instruction.

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Have you ever tried tessellating capital letters? Have a look at these examples and then try some for yourself.

Can you fit the tangram pieces into the outline of Granma T?