Can you cut up a square in the way shown and make the pieces into a triangle?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Use the three triangles to fill these outline shapes. Perhaps you can create some of your own shapes for a friend to fill?

Move just three of the circles so that the triangle faces in the opposite direction.

An extension of noughts and crosses in which the grid is enlarged and the length of the winning line can to altered to 3, 4 or 5.

What happens when you try and fit the triomino pieces into these two grids?

Try to picture these buildings of cubes in your head. Can you make them to check whether you had imagined them correctly?

Can you fit the tangram pieces into the outline of Mai Ling?

A game for 2 players. Given a board of dots in a grid pattern, players take turns drawing a line by connecting 2 adjacent dots. Your goal is to complete more squares than your opponent.

If you split the square into these two pieces, it is possible to fit the pieces together again to make a new shape. How many new shapes can you make?

We can cut a small triangle off the corner of a square and then fit the two pieces together. Can you work out how these shapes are made from the two pieces?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Have a go at making a few of these shapes from paper in different sizes. What patterns can you create?

What does the overlap of these two shapes look like? Try picturing it in your head and then use the interactivity to test your prediction.

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you work out what shape is made when this piece of paper is folded up using the crease pattern shown?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Paint a stripe on a cardboard roll. Can you predict what will happen when it is rolled across a sheet of paper?

Exchange the positions of the two sets of counters in the least possible number of moves

Take a rectangle of paper and fold it in half, and half again, to make four smaller rectangles. How many different ways can you fold it up?

How many different cuboids can you make when you use four CDs or DVDs? How about using five, then six?

Investigate the number of paths you can take from one vertex to another in these 3D shapes. Is it possible to take an odd number and an even number of paths to the same vertex?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this telephone?

10 space travellers are waiting to board their spaceships. There are two rows of seats in the waiting room. Using the rules, where are they all sitting? Can you find all the possible ways?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you split each of the shapes below in half so that the two parts are exactly the same?

Here are some arrangements of circles. How many circles would I need to make the next size up for each? Can you create your own arrangement and investigate the number of circles it needs?

Can you find ways of joining cubes together so that 28 faces are visible?

Can you fit the tangram pieces into the outlines of the workmen?

This challenge involves eight three-cube models made from interlocking cubes. Investigate different ways of putting the models together then compare your constructions.

Can you fit the tangram pieces into the outline of this junk?

If you can post the triangle with either the blue or yellow colour face up, how many ways can it be posted altogether?

Take it in turns to place a domino on the grid. One to be placed horizontally and the other vertically. Can you make it impossible for your opponent to play?